Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 761
Filtrar
1.
J Am Soc Nephrol ; 35(1): 7-21, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990364

RESUMO

SIGNIFICANCE STATEMENT: In the kidney, the B1 H + -ATPase subunit is mostly expressed in intercalated cells (IC). Its importance in acid-secreting type A ICs is evident in patients with inborn distal renal tubular acidosis and ATP6V1B1 mutations. However, the protein is also highly expressed in alkali-secreting non-type A ICs where its function is incompletely understood. We demonstrate in Atp6v1b1 knock out mice that the B1 subunit is critical for the renal response to defend against alkalosis during an alkali load or chronic furosemide treatment. These findings highlight the importance of non-type A ICs in maintaining acid-base balance in response to metabolic challenges or commonly used diuretics. BACKGROUND: Non-type A ICs in the collecting duct system express the luminal Cl - /HCO 3- exchanger pendrin and apical and/or basolateral H + -ATPases containing the B1 subunit isoform. Non-type A ICs excrete bicarbonate during metabolic alkalosis. Mutations in the B1 subunit (ATP6V1B1) cause distal renal tubular acidosis due to its role in acid secretory type A ICs. The function of B1 in non-type A ICs has remained elusive. METHODS: We examined the responses of Atp6v1b1-/- and Atp6v1b1+/+ mice to an alkali load and to chronic treatment with furosemide. RESULTS: An alkali load or 1 week of furosemide resulted in a more pronounced hypokalemic alkalosis in male ATP6v1b1-/- versus Atp6v1b1+/+ mice that could not be compensated by respiration. Total pendrin expression and activity in non-type A ICs of ex vivo microperfused cortical collecting ducts were reduced, and ß2 -adrenergic stimulation of pendrin activity was blunted in ATP6v1b1-/- mice. Basolateral H + -ATPase activity was strongly reduced, although the basolateral expression of the B2 isoform was increased. Ligation assays for H + -ATPase subunits indicated impaired assembly of V 0 and V 1 H + -ATPase domains. During chronic furosemide treatment, ATP6v1b1-/- mice also showed polyuria and hyperchloremia versus Atp6v1b1+/+ . The expression of pendrin, the water channel AQP2, and subunits of the epithelial sodium channel ENaC were reduced. CONCLUSIONS: Our data demonstrate a critical role of H + -ATPases in non-type A ICs function protecting against alkalosis and reveal a hitherto unrecognized need of basolateral B1 isoform for a proper H + -ATPase complexes assembly and ability to be stimulated.


Assuntos
Acidose Tubular Renal , Alcalose , Túbulos Renais Coletores , ATPases Vacuolares Próton-Translocadoras , Humanos , Masculino , Camundongos , Animais , Acidose Tubular Renal/genética , Furosemida/farmacologia , Aquaporina 2/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rim/metabolismo , Alcalose/metabolismo , Transportadores de Sulfato/metabolismo , Isoformas de Proteínas , Álcalis , Túbulos Renais Coletores/metabolismo
2.
J Am Soc Nephrol ; 34(8): 1329-1342, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37344929

RESUMO

SIGNIFICANCE STATEMENT: During acute base excess, the renal collecting duct ß -intercalated cells ( ß -ICs) become activated to increase urine base excretion. This process is dependent on pendrin and cystic fibrosis transmembrane regulator (CFTR) expressed in the apical membrane of ß -ICs. The signal that leads to activation of this process was unknown. Plasma secretin levels increase during acute alkalosis, and the secretin receptor (SCTR) is functionally expressed in ß -ICs. We find that mice with global knockout for the SCTR lose their ability to acutely increase renal base excretion. This forces the mice to lower their ventilation to cope with this challenge. Our findings suggest that secretin is a systemic bicarbonate-regulating hormone, likely being released from the small intestine during alkalosis. BACKGROUND: The secretin receptor (SCTR) is functionally expressed in the basolateral membrane of the ß -intercalated cells of the kidney cortical collecting duct and stimulates urine alkalization by activating the ß -intercalated cells. Interestingly, the plasma secretin level increases during acute metabolic alkalosis, but its role in systemic acid-base homeostasis was unclear. We hypothesized that the SCTR system is essential for renal base excretion during acute metabolic alkalosis. METHODS: We conducted bladder catheterization experiments, metabolic cage studies, blood gas analysis, barometric respirometry, perfusion of isolated cortical collecting ducts, immunoblotting, and immunohistochemistry in SCTR wild-type and knockout (KO) mice. We also perfused isolated rat small intestines to study secretin release. RESULTS: In wild-type mice, secretin acutely increased urine pH and pendrin function in isolated perfused cortical collecting ducts. These effects were absent in KO mice, which also did not sufficiently increase renal base excretion during acute base loading. In line with these findings, KO mice developed prolonged metabolic alkalosis when exposed to acute oral or intraperitoneal base loading. Furthermore, KO mice exhibited transient but marked hypoventilation after acute base loading. In rats, increased blood alkalinity of the perfused upper small intestine increased venous secretin release. CONCLUSIONS: Our results suggest that loss of SCTR impairs the appropriate increase of renal base excretion during acute base loading and that SCTR is necessary for acute correction of metabolic alkalosis. In addition, our findings suggest that blood alkalinity increases secretin release from the small intestine and that secretin action is critical for bicarbonate homeostasis.


Assuntos
Alcalose , Bicarbonatos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Ratos , Alcalose/metabolismo , Bicarbonatos/metabolismo , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Secretina , Transportadores de Sulfato
3.
Sheng Li Xue Bao ; 75(2): 216-230, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37089096

RESUMO

Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.


Assuntos
Alcalose , Síndrome de Bartter , Síndrome de Gitelman , Hiperpotassemia , Hipertensão , Hipopotassemia , Pseudo-Hipoaldosteronismo , Humanos , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/metabolismo , Potássio/metabolismo , Aldosterona/metabolismo , Hipopotassemia/metabolismo , Síndrome de Gitelman/metabolismo , Hiperpotassemia/metabolismo , Relevância Clínica , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Distais/metabolismo , Sódio/metabolismo , Alcalose/metabolismo , Água/metabolismo , Rim/metabolismo
4.
Am J Physiol Cell Physiol ; 324(5): C1171-C1178, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036298

RESUMO

A primary function of intercalated cells in the distal tubule of the kidney is to maintain pH homeostasis. For example, type B intercalated cells secrete bicarbonate largely through the action of the apical Cl-/HCO3- exchanger, pendrin, which helps correct metabolic alkalosis. Since both the K-Cl cotransporter, KCC3a and pendrin colocalize to the apical region of type B and non-A, non-B intercalated cells and since both are upregulated in models of metabolic alkalosis, such as with dietary NaHCO3 loading, we raised the possibility that apical KCC3a facilitates pendrin-mediated bicarbonate secretion, such as through apical Cl- recycling. The purpose of this study was to determine if KCC3a abundance changes through intake of bicarbonate alone or through bicarbonate plus its accompanying cation, and if it requires a direct interaction with pendrin or the renin-angiotensin-aldosterone system. We observed that KCC3a protein abundance, but not mRNA, increases in a mouse model of metabolic alkalosis, achieved with dietary NaHCO3 or KHCO3 intake. Bicarbonate ion increases KCC3a abundance, both in vivo and in vitro, independently of the accompanying cation. Moreover, bicarbonate intake upregulates KCC3a independently of aldosterone or angiotensin II. Since NaHCO3 intake increased KCC3a abundance in wild-type as well as in pendrin knockout mice, this KCC3a upregulation by bicarbonate does not depend on a direct interaction with pendrin. We conclude that increased extracellular bicarbonate, as observed in models of metabolic alkalosis, directly raises KCC3a abundance independently of angiotensin II, aldosterone, or changes in KCC3a transcription and does not involve a direct interaction with pendrin.NEW & NOTEWORTHY KCC3a expression is stimulated in alkalemia. This paper shows that bicarbonate itself is mediating this effect through a posttranscriptional mechanism. The paper also shows that this phenomenon is not mediated by aldosterone or angiotensin II.


Assuntos
Alcalose , Bicarbonatos , Animais , Camundongos , Bicarbonatos/metabolismo , Aldosterona/farmacologia , Aldosterona/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Rim/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Alcalose/metabolismo , Proteínas de Transporte de Ânions/genética
5.
Pediatr Pulmonol ; 58(6): 1815-1817, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951017

RESUMO

INTRODUCTION: Low plasma bicarbonate concentration due to chronic respiratory alkalosis may be misdiagnosed as metabolic acidosis and mistreated with administration of alkali therapy, particularly when arterial blood gas is not available. METHODS: We measured urine anion gap [urine (Na+ + K+ ) - (Cl- )], as a surrogate of renal ammonium excretion in 15 patients presenting with hyperventilation and low serum bicarbonate concentration to distinguish chronic respiratory alkalosis (CRA) from metabolic acidosis (MA) when blood gas was unavailable. RESULTS: Hyperventilation and low serum bicarbonate concentrations were associated with urine pH above 5.5 and positive urine anion gap in all, suggesting CRA. The diagnosis was later confirmed by obtaining capillary blood gas, which showed a decrease in PCO2 and high normal pH values. CONCLUSION: The use of urine anion gap can help to differentiate between chronic respiratory alkalosis and metabolic acidosis, especially when arterial blood gas is not obtained.


Assuntos
Acidose , Alcalose Respiratória , Alcalose , Humanos , Equilíbrio Ácido-Base , Alcalose Respiratória/diagnóstico , Alcalose Respiratória/metabolismo , Hiperventilação , Bicarbonatos , Acidose/diagnóstico , Acidose/metabolismo , Alcalose/diagnóstico , Alcalose/metabolismo , Concentração de Íons de Hidrogênio
6.
Biosci Rep ; 43(3)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36876487

RESUMO

Severe coronavirus disease 2019 (COVID-19) infection can lead to extensive lung infiltrate, a significant increase in the respiratory rate, and respiratory failure, which can affect the acid-base balance. No research in the Middle East has previously examined acid-base imbalance in COVID-19 patients. The present study aimed to describe the acid-base imbalance in hospitalized COVID-19 patients, determine its causes, and assess its impact on mortality in a Jordanian hospital. The study divided patients into 11 groups based on arterial blood gas data. Patients in normal group were defined as having a pH of 7.35-7.45, PaCO2 of 35-45 mmHg, and HCO3- of 21-27 mEq/L. Other patients were divided into 10 additional groups: mixed acidosis and alkalosis, respiratory and metabolic acidosis with or without compensation, and respiratory and metabolic alkalosis with or without compensation. This is the first study to categorize patients in this way. The results showed that acid-base imbalance was a significant risk factor for mortality (P<0.0001). Mixed acidosis nearly quadruples the risk of death when compared with those with normal levels (OR = 3.61, P=0.05). Furthermore, the risk of death was twice as high (OR = 2) for metabolic acidosis with respiratory compensation (P=0.002), respiratory alkalosis with metabolic compensation (P=0.002), or respiratory acidosis with no compensation (P=0.002). In conclusion, acid-base abnormalities, particularly mixed metabolic and respiratory acidosis, were associated with increased mortality in hospitalized COVID-19 patients. Clinicians should be aware of the significance of these abnormalities and address their underlying causes.


Assuntos
Desequilíbrio Ácido-Base , Acidose Respiratória , Acidose , Alcalose , COVID-19 , Humanos , Acidose Respiratória/metabolismo , Desequilíbrio Ácido-Base/metabolismo , Alcalose/metabolismo , Acidose/metabolismo , Fatores de Risco
8.
Acta Physiologica Sinica ; (6): 216-230, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-980999

RESUMO

Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.


Assuntos
Humanos , Síndrome de Bartter/metabolismo , Pseudo-Hipoaldosteronismo/metabolismo , Potássio/metabolismo , Aldosterona/metabolismo , Hipopotassemia/metabolismo , Síndrome de Gitelman/metabolismo , Hiperpotassemia/metabolismo , Relevância Clínica , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Distais/metabolismo , Sódio/metabolismo , Hipertensão , Alcalose/metabolismo , Água/metabolismo , Rim/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173044

RESUMO

The lungs and kidneys are pivotal organs in the regulation of body acid-base homeostasis. In cystic fibrosis (CF), the impaired renal ability to excrete an excess amount of HCO3- into the urine leads to metabolic alkalosis [P. Berg et al., J. Am. Soc. Nephrol. 31, 1711-1727 (2020); F. Al-Ghimlas, M. E. Faughnan, E. Tullis, Open Respir. Med. J. 6, 59-62 (2012)]. This is caused by defective HCO3- secretion in the ß-intercalated cells of the collecting duct that requires both the cystic fibrosis transmembrane conductance regulator (CFTR) and pendrin for normal function [P. Berg et al., J. Am. Soc. Nephrol. 31, 1711-1727 (2020)]. We studied the ventilatory consequences of acute oral base loading in normal, pendrin knockout (KO), and CFTR KO mice. In wild-type mice, oral base loading induced a dose-dependent metabolic alkalosis, fast urinary removal of base, and a moderate base load did not perturb ventilation. In contrast, CFTR and pendrin KO mice, which are unable to rapidly excrete excess base into the urine, developed a marked and transient depression of ventilation when subjected to the same base load. Therefore, swift renal base elimination in response to an acute oral base load is a necessary physiological function to avoid ventilatory depression. The transient urinary alkalization in the postprandial state is suggested to have evolved for proactive avoidance of hypoventilation. In CF, metabolic alkalosis may contribute to the commonly reduced lung function via a suppression of ventilatory drive.


Assuntos
Alcalose/fisiopatologia , Fibrose Cística/fisiopatologia , Hipoventilação/fisiopatologia , Equilíbrio Ácido-Base/fisiologia , Alcalose/metabolismo , Animais , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Modelos Animais de Doenças , Feminino , Hipoventilação/etiologia , Hipoventilação/metabolismo , Transporte de Íons , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Eliminação Renal , Reabsorção Renal/fisiologia
10.
Ann Hepatol ; 27(2): 100675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35074477

RESUMO

In addition to the kidneys and lungs, the liver also plays an important role in the regulation of the Acid-Base Equilibrium (ABE). The involvement of the liver in the regulation of ABE is crucial because of its role in lactic acid metabolism, urea production and in protein homeostasis. The main acid-base imbalance that occurs in patients with liver cirrhosis is Respiratory Alkalosis (RAlk). Due to the fact that in these patients additional pathophysiological mechanisms that affect the ABE are present, other disorders may appear which compensate or enhance the primary disorder. Conventional ABE reading models fail to identify and assess the underlying disorders in patients with liver cirrhosis. This weakness of the classical models led to the creation of new physicochemical mathematical models that take into account all the known parameters that develop and affect the ABE. In addition to the RAlk, in patients with liver cirrhosis, metabolic alkalosis (due to hypoalbuminemia), hyponatremic metabolic acidosis, hyperchloremic metabolic acidosis, lactic acidosis and metabolic alkalosis due to urea metabolism are some of the pathophysiological mechanisms that affect the ABE.


Assuntos
Acidose , Alcalose , Hepatopatias , Acidose/etiologia , Acidose/metabolismo , Alcalose/complicações , Alcalose/metabolismo , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Hepatopatias/metabolismo , Ureia
11.
Med. intensiva (Madr., Ed. impr.) ; 45(7): 421-430, Octubre 2021. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-224144

RESUMO

Objetivo Evaluar el impacto de la infusión de lactato de sodio 0,5M sobre variables del medio interno y sobre la presión intracraneana en pacientes críticos. Diseño Estudio prospectivo experimental de cohorte única. Ámbito Unidad de cuidados intensivos de un hospital universitario. Pacientes Pacientes con shock y neurocríticos con hipertensión intracraneana. Intervenciones Se infundió una carga de 500 cc de infusión de lactato de sodio 0,5M en 15 min y se midió el nivel plasmático de sodio, potasio, magnesio, calcio, cloro, lactato, bicarbonato, PaCO2 arterial, pH, fosfato y albúmina en 3 tiempos: T0 preinfusión; T1 a los 30 min y T2 a los 60 min postinfusión. Se midieron la presión arterial media y presión intracraneana en T0 y T2. Resultados Recibieron el fluido N=41: n=19 como osmoagente y 22 como expansor. Se constató alcalosis metabólica: T0 vs. T1 (p=0,007); T1 vs. T2 (p=0,003). La natremia aumentó en los 3 tiempos (T0 vs. T1; p<0,0001; T1 vs. T2; p=0,0001). Se demostró un descenso de la presión intracraneana (T0: 24,83±5,4 vs. T2: 15,06±5,8; p <0,001). El lactato aumentó inicialmente (T1) con un rápido descenso (T2) (p <0,0001), incluso en aquellos pacientes con hiperlactatemia basal (p=0,002). Conclusiones La infusión de lactato de sodio 0,5M genera alcalosis metabólica, hipernatremia, disminución de la cloremia y un cambio bifásico del lactato, y muestra eficacia en el descenso de la presión intracraneana en pacientes con daño encefálico agudo. (AU)


Objective To evaluate the impact of the infusion of sodium lactate 500ml upon different biochemical variables and intracranial pressure in patients admitted to the intensive care unit. Design A prospective experimental single cohort study was carried out. Scope Polyvalent intensive care unit of a university hospital. Patients Critical patients with shock and intracranial hypertension. Procedure A 500ml sodium lactate bolus was infused in 15min. Plasma levels of sodium, potassium, magnesium, calcium, chloride, lactate, bicarbonate, PaCO2, pH, phosphate and albumin were recorded at 3timepoints: T0 pre-infusion; T1 at 30minutes, and T2 at 60minutes post-infusion. Mean arterial pressure and intracranial pressure were measured at T0 and T2. Results Forty-one patients received sodium lactate: 19 as an osmotically active agent and 22 as a volume expander. Metabolic alkalosis was observed: T0 vs. T1 (P=0.007); T1 vs. T2 (P=0.003). Sodium increased at the 3time points (T0 vs. T1, P<0.0001; T1 vs. T2, P=0.0001). In addition, sodium lactate decreased intracranial pressure (T0: 24.83±5.4 vs. T2: 15.06±5.8; P<0.001). Likewise, plasma lactate showed a biphasic effect, with a rapid decrease at T2 (P<0.0001), including in those with previous hyperlactatemia (P=0.002). Conclusions The infusion of sodium lactate is associated to metabolic alkalosis, hypernatremia, reduced chloremia, and a biphasic change in plasma lactate levels. Moreover, a decrease in intracranial pressure was observed in patients with acute brain injury. (AU)


Assuntos
Humanos , Lactato de Sódio/administração & dosagem , Lactato de Sódio/uso terapêutico , Hidratação/instrumentação , Alcalose/metabolismo , Hipertensão Intracraniana/terapia , Estado Terminal , Unidades de Terapia Intensiva
13.
Sci Rep ; 10(1): 13732, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792614

RESUMO

This investigation assessed the course of renal compensation of hypoxia-induced respiratory alkalosis by elimination of bicarbonate ions and impairments in anaerobic exercise after different durations of hypoxic exposure. Study A: 16 participants underwent a resting 12-h exposure to normobaric hypoxia (3,000 m). Blood gas analysis was assessed hourly. While blood pH was significantly increased, PO2, PCO2, and SaO2 were decreased within the first hour of hypoxia, and changes remained consistent. A substantial reduction in [HCO3-] levels was observed after 12 h of hypoxic exposure (- 1.35 ± 0.29 mmol/L, p ≤ 0.05). Study B: 24 participants performed in a randomized, cross-over trial portable tethered sprint running (PTSR) tests under normoxia and after either 1 h (n = 12) or 12 h (n = 12) of normobaric hypoxia (3,000 m). No differences occurred for PTSR-related performance parameters, but the reduction in blood lactate levels was greater after 12 h compared with 1 h (- 1.9 ± 2.2 vs 0.0 ± 2.3 mmol/L, p ≤ 0.05). These results indicate uncompensated respiratory alkalosis after 12 h of hypoxia and similar impairment of high-intensity exercise after 1 and 12 h of hypoxic exposure, despite a greater reduction in blood lactate responses after 12 h compared with 1 h of hypoxic exposure.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Adulto , Alcalose/metabolismo , Alcalose/fisiopatologia , Altitude , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Estudos Cross-Over , Feminino , Humanos , Hipóxia/metabolismo , Masculino , Oxigênio/metabolismo , Corrida/fisiologia , Adulto Jovem
14.
BMC Nephrol ; 21(1): 328, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758178

RESUMO

BACKGROUND: Gitelman syndrome is a rare salt-losing renal tubular disorder associated with mutation of SLC12A3 gene, which encodes the Na-Cl co-transporter (NCCT). Gitelman syndrome is characterized by hypokalemia, metabolic alkalosis, hypomagnesemia, hypocalciuria, and renin-angiotensin-aldosterone system (RAAS) activation. Different SLC12A3 variants may lead to phenotypic variability and severity. METHODS: In this study, we reported the clinical features and genetic analysis of a Chinese pedigree diagnosed with Gitelman syndrome. RESULTS: The proband exhibited hypokalaemia, hypomagnesemia, metabolic alkalosis, but hypercalciuria and kidney stone formation. The increased urinary calcium excretion made it confused to Bartter syndrome. The persistent renal potassium wasting resulted in renal tubular lesions, and might affect urinary calcium reabsorption and excretion. Genetic analysis revealed mutations of SLC12A3 gene with c.433C > T (p.Arg145Cys), c.1077C > G (p.Asn359Lys), and c.1666C > T (p.Pro556Ser). Potential alterations of structure and function of NCCT protein due to those genetic variations of SLC12A3 are predicted. Interestingly, one sibling of the proband carried the same mutant sites and exhibited similar clinical features with milder phenotypes of hypokalemia and hypomagnesemia, but hypocalciuria rather than hypercalciuria. Family members with at least one wild type copy of SLC12A3 had normal biochemistry. With administration of spironolactone, potassium chloride and magnesium supplement, the serum potassium and magnesium were maintained within normal ranges. CONCLUSIONS: In this study, we identified compound mutations of SLC12A3 associated with varieties of clinical features. Further efforts are needed to investigate the diversity in clinical manifestations of Gitelman syndrome and its correlation with specific SLC12A3 mutations.


Assuntos
Síndrome de Gitelman/genética , Adulto , Idoso , Alcalose/genética , Alcalose/metabolismo , Síndrome de Bartter/metabolismo , China , Feminino , Genótipo , Síndrome de Gitelman/metabolismo , Humanos , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipopotassemia/genética , Hipopotassemia/metabolismo , Magnésio/sangue , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Eliminação Renal , Membro 3 da Família 12 de Carreador de Soluto/genética , Desequilíbrio Hidroeletrolítico/genética , Desequilíbrio Hidroeletrolítico/metabolismo
15.
BMC Nephrol ; 21(1): 296, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703174

RESUMO

BACKGROUND: Sodium bicarbonate, in the form of baking soda, is widely used as a home remedy, and as an additive for personal and household cleaning products. Its toxicity has previously been reported following oral ingestion in the setting of dyspepsia. However, its use as a non-ingested agent, like a toothpaste additive, has not been reported as a potential cause of toxicity. CASE PRESENTATION: We are reporting a case of an 80-year-old woman who presented with chronic metabolic alkalosis and hypokalemia secondary to exogenous alkali exposure from baking soda as a toothpaste additive, which might have represented an underreported ingestion of the substance. CONCLUSIONS: Considering that one teaspoon of baking soda provides approximately 59 m-equivalents (mEq) of bicarbonate, specific questioning on its general use should be pursued in similar cases of chloride resistant metabolic alkalosis.


Assuntos
Alcalose/induzido quimicamente , Cloretos/metabolismo , Hipopotassemia/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Bicarbonato de Sódio/efeitos adversos , Cremes Dentais , Idoso de 80 Anos ou mais , Alcalose/metabolismo , Feminino , Humanos , Hipopotassemia/metabolismo , Insuficiência Renal Crônica/complicações
16.
Glia ; 67(12): 2264-2278, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31318482

RESUMO

The electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), is the major bicarbonate transporter expressed in astrocytes. It is highly sensitive for bicarbonate and the main regulator of intracellular, extracellular, and synaptic pH, thereby modulating neuronal excitability. However, despite these essential functions, the molecular mechanisms underlying NBCe1-mediated astrocytic response to extracellular pH changes are mostly unknown. Using primary mouse cortical astrocyte cultures, we investigated the effect of long-term extracellular metabolic alkalosis on regulation of NBCe1 and elucidated the underlying molecular mechanisms by immunoblotting, biotinylation of surface proteins, intracellular H+ recording using the H+ -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, and phosphoproteomic analysis. The results showed significant downregulation of NBCe1 activity following metabolic alkalosis without influencing protein abundance or surface expression of NBCe1. During alkalosis, the rate of intracellular H+ changes upon challenging NBCe1 was decreased in wild-type astrocytes, but not in cortical astrocytes from NBCe1-deficient mice. Alkalosis-induced decrease of NBCe1 activity was rescued after activation of mTOR signaling. Moreover, mass spectrometry revealed constitutively phosphorylated S255-257 and mutational analysis uncovered these residues being crucial for NBCe1 transport activity. Our results demonstrate a novel mTOR-regulated mechanism by which NBCe1 functional expression is regulated. Such mechanism likely applies not only for NBCe1 in astrocytes, but in epithelial cells as well.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Simportadores de Sódio-Bicarbonato/biossíntese , Serina-Treonina Quinases TOR/fisiologia , Alcalose/metabolismo , Alcalose/patologia , Animais , Células Cultivadas , Feminino , Expressão Gênica , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/fisiologia , Simportadores de Sódio-Bicarbonato/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-31071454

RESUMO

Given that the chemistry of lactate production disproves the existence of a lactic acidosis, there is a need to further reveal and explain the importance of the organic and computational chemistry of pH dependent competitive cation fractional (~) proton (H+) exchange (~H+e). An additional importance of this knowledge is that it could potentially contradict the assumption of the Stewart approach to the physico-chemical theory of acid-base balance. For example, Stewart proposed that chemical reaction and pH dependent H+ dissociation and association do not directly influence the pH of cellular and systemic body fluids. Yet at the time of Stewart's work, there were no data that quantified the H+ exchange during chemical reactions, or from pH dependent metabolite H+ association or dissociation. Consequently, the purpose of this review and commentary was three-fold; 1) to provide explanation of pH dependent competitive cation ~H+e exchange; 2) develop a model of and calculate new data of substrate flux in skeletal muscle during intense exercise; and 3) then combine substrate flux data with the now known ~H+e from chemical reactions of non-mitochondrial energy catabolism to quantify chemical reaction and metabolic pathway ~H+e. The results of purpose 3 were that ~H+ release for the totality of cytosolic energy catabolism = -187.2 mmol·L-1, where total glycolytic ~H+te = -85.0 mmol·L-1. ATP hydrolysis had a ~H+te = -43.1 mmol·L-1. Lactate production provided the largest metabolic ~H+ buffering with a ~H+te = 44.5 mmol·L-1. The total ~H+ release to La ratio = 4.25. The review content and research results of this manuscript should direct science towards new approaches to understanding the cause and source of H+e during metabolic acidosis and alkalosis.


Assuntos
Acidose/genética , Alcalose/genética , Líquidos Corporais/metabolismo , Prótons , Acidose/metabolismo , Alcalose/metabolismo , Bicarbonatos/metabolismo , Glicólise/genética , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo
18.
Nephrol Dial Transplant ; 34(1): 38-39, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982819

RESUMO

Hypokalaemia with alkalosis can suggest excess aldosterone. Aldosterone stimulates the collecting duct mineralocorticoid receptor (MR) to upregulate the epithelial sodium channel (ENaC) and stimulate electrogenic sodium reabsorption, with secretion of potassium and protons. Gitelman, Bartter and Liddle syndrome, and liquorice ingestion all cause hypokalaemic alkalosis. This mini-review outlines the pathophysiology of these conditions as well as how to differentiate them.


Assuntos
Alcalose/diagnóstico , Síndrome de Bartter/diagnóstico , Biomarcadores/metabolismo , Glycyrrhiza/efeitos adversos , Hipopotassemia/diagnóstico , Aldosterona/metabolismo , Alcalose/etiologia , Alcalose/metabolismo , Síndrome de Bartter/complicações , Síndrome de Bartter/metabolismo , Diagnóstico Diferencial , Canais Epiteliais de Sódio/metabolismo , Humanos , Hipopotassemia/etiologia , Hipopotassemia/metabolismo , Túbulos Renais/metabolismo , Potássio/metabolismo , Sódio/metabolismo
19.
Kidney Int ; 93(4): 893-902, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29310825

RESUMO

Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis.


Assuntos
Túbulos Renais Distais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio na Dieta/metabolismo , Alcalose/genética , Alcalose/metabolismo , Alcalose/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Homeostase , Hidroclorotiazida/farmacologia , Hipopotassemia/genética , Hipopotassemia/metabolismo , Hipopotassemia/fisiopatologia , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Knockout , Natriurese , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/genética , Eliminação Renal , Sódio/urina , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
20.
Arq. bras. med. vet. zootec. (Online) ; 69(5): 1083-1088, set.-out. 2017. tab, graf
Artigo em Português | LILACS, VETINDEX | ID: biblio-876984

RESUMO

O objetivo do presente estudo foi avaliar a hemogasometria venosa de equinos com lesões isquêmicas induzidas experimentalmente no cólon menor. Foram utilizados oito equinos sadios, com idades entre cinco e oito anos, sem raça definida. Os animais foram submetidos à celiotomia e a quatro horas de obstrução intraluminal do cólon menor. Foram realizadas coletas de amostras de sangue imediatamente antes da indução anestésica (T0), no momento em que a anestesia foi estabilizada (T1), quatro horas após a obstrução intraluminal (T4), e, durante o pós-cirúrgico, as coletas foram realizadas em intervalos de 12 horas até completar 72 horas (T16, T28, T40, T52, T64 e T76). Notou-se em T4 alcalose metabólica, com compensação respiratória por meio da hipoventilação. Esse quadro de alcalose foi brando e transitório, retornando os valores normais para a espécie em T16, com 12 horas de desobstrução intestinal.(AU)


The objective of this study was to evaluate the blood gas analysis of venous blood of horses with experimentally induced ischemic lesions on the lower colon. Eight healthy horses were used, with ages between five and eight years, mixed breed. The animals were subjected to celiotomy and four hours of lower colonic intraluminal obstruction. The harvests were made with the blood samples immediately before induction of anesthesia (T0), when the anesthesia was stabilized (T1), 4 hours after the intraluminal obstruction (T4) and during postsurgical times were performed at intervals of 12 hours to complete 72 hours (T16, T28, T40, T52, T64 and T76). The occurrence of metabolic alkalosis on T4 with respiratory compensation by hypoventilation was noted, this alkalosis period was bland and transient, returning the normal values for the specie on T16, 12 hours after the intestinal obstruction.(AU)


Assuntos
Animais , Alcalose/metabolismo , Gasometria/veterinária , Colo/cirurgia , Cavalos/cirurgia , Obstrução Intestinal/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...